ProjectManagement: an R package for managing projects

Juan Carlos Gonçalves Dosantos Grupo MODES, CITIC Departamento de Matemáticas Universidade da Coruña

Outline

Project Management

- Deterministic Projects
- Resource Management
- Delay Costs Allocation

2 Stochastic Projects

- Stochastic Project Management
- Delay Costs Allocation

Deterministic Projects Resource Management Delay Costs Allocation

UNIVERSIDADE DA CORUÑA

ヘロト ヘアト ヘビト ヘビ

3/30

A Project

Formally, a project is a 3-tuple (N, \prec, x^0) where:

- *N* is the finite set of activities.
- ≺ is a binary relation over N satisfying asymmetry and transitivity. For every *i*, *j* ∈ N, we interpret *i* ≺ *j* as "activity *j* cannot start until activity *i* has finished".
- x⁰ ∈ ℝ^N is the vector of estimated durations. For every i ∈ N, x⁰_i is a non-negative real number indicating the estimated duration of activity *i*.

Stochastic Projects

Deterministic Projects Resource Management Delay Costs Allocation

An Example

N	1	2	3	4	5
Immediate precedence	-	-	-	2	3
Durations	2	1.5	1	1.5	2

N	6	7	8	9	10
Immediate precedence	3	1, 4	2	5, 8	6
Durations	2.5	3	4	2	5

Table: Example of a deterministic project.

UNIVERSIDADE DA CORUÑA

ъ

Stochastic Projects

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

- > prec<-matrix(0,nrow=10,ncol=10)</pre>
- > prec[1,7]<-1; prec[2,4]<-1; prec[2,8]<-1;
- > prec[3,5]<-1; prec[3,6]<-1; prec[4,7]<-1;
- > prec[5,9]<-1; prec[6,10]<-1; prec[8,9]<-1;

Example

> dag.plot(prec)

・ロ と ・ 一日 と ・ 日 と ・ 日 と

Stochastic Projects

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

- > prec<-matrix(0,nrow=10,ncol=10)</pre>
- > prec[1,7]<-1; prec[2,4]<-1; prec[2,8]<-1;
- > prec[3,5]<-1; prec[3,6]<-1; prec[4,7]<-1;
- > prec[5,9]<-1; prec[6,10]<-1; prec[8,9]<-1;

Example

> dag.plot(prec)

・ロト ・ 同ト ・ ヨト ・ ヨト

Stochastic Projects

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Figure: AON graph of the project.

Juan Carlos Gonçalves Dosantos ProjectManagement

6/30

Stochastic Projects

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

> duration<-c(2,1.5,1,1.5,2,2.5,3,4,2,5)

Example

> schedule.pert(duration,prec)

Stochastic Projects

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

> duration<-c(2,1.5,1,1.5,2,2.5,3,4,2,5)

Example

> schedule.pert(duration,prec)

Stochastic Projects

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

'Total duration of the project' [1] 8.5

	Duration	Earliest start	Latest start	Earliest completion
1	2.0	0.0	3.5	2.0
2	1.5	0.0	1.0	1.5
3	1.0	0.0	0.0	1.0
4	1.5	1.5	4.0	3.0
5	2.0	1.0	4.5	3.0
6	2.5	1.0	1.0	3.5
7	3.0	3.0	5.5	6.0
8	4.0	1.5	2.5	5.5
9	2.0	5.5	6.5	7.5
10	5.0	3.5	3.5	8.5

Stochastic Projects

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

	Latest completion	Slack	Free Slack	Independent Slack
1	5.5	3.5	1.0	0.0
2	2.5	1.0	0.0	0.0
3	1.0	0.0	0.0	0.0
4	5.5	2.5	0.0	0.0
5	6.5	3.5	2.5	0.0
6	3.5	0.0	0.0	0.0
7	8.5	2.5	2.5	0.0
8	6.5	1.0	0.0	0.0
9	8.5	1.0	1.0	0.0
10	8.5	0.0	0.0	0.0

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Stochastic Projects

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Figure: AON graph of the project. Nodes in red indicate critica UNVERSIDANCE da CORUNA

Juan Carlos Gonçalves Dosantos

ProjectManagement

10/30

Deterministic Projects Resource Management Delay Costs Allocation

Resource Management

- The minimal cost expediting considers that the duration of some activities can be reduced by increasing the resources allocated to them and thus the implementation costs.
- Levelling of resources: execute the project in its minimum duration time whilst the use of resources is as uniform as possible over time.
- Allocation of resources: the level of resources available in each period of time is limited.

<<p>< □ > < □ > < □ > < Ξ >

11/30

Deterministic Projects Resource Management Delay Costs Allocation

UNIVERSIDADE DA CORUÑA

11/30

Resource Management

- The minimal cost expediting considers that the duration of some activities can be reduced by increasing the resources allocated to them and thus the implementation costs.
- Levelling of resources: execute the project in its minimum duration time whilst the use of resources is as uniform as possible over time.
- Allocation of resources: the level of resources available in each period of time is limited.

Deterministic Projects Resource Management Delay Costs Allocation

UNIVERSIDADE DA CORUÑA

< 🗇 >

11/30

Resource Management

- The minimal cost expediting considers that the duration of some activities can be reduced by increasing the resources allocated to them and thus the implementation costs.
- Levelling of resources: execute the project in its minimum duration time whilst the use of resources is as uniform as possible over time.
- Allocation of resources: the level of resources available in each period of time is limited.

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

> minimum.durations<-c(1,1,0.5,1,1,2,2,3,1,3)

> activities.costs<-c(1,2,1,1,3,2,1,2,3,5)

Example

> mce(duration,minimum.durations,prec, activities.costs,duration.project=NULL)

UNIVERSIDADE DA CORUÑA

ヘロト ヘアト ヘビト ヘビ

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

> minimum.durations<-c(1,1,0.5,1,1,2,2,3,1,3)

> activities.costs<-c(1,2,1,1,3,2,1,2,3,5)

Example

> mce(duration,minimum.durations,prec, activities.costs,duration.project=NULL)

Se UNIVERSIDADE DA CORUÑA

12/30

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

necessary negative increase 1: 0.5 Read 1 item

Project duration = [1] 8.0 7.5 7.0 6.5 6.0 5.5

.≣...>

∃ <2 <</p>

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

necessary negative increase 1: 0.5 Read 1 item Project duration = [1] 8.0 7.5 7.0 6.5 6.0 5.5

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

> resources<-c(2,3,4,3,3,4,2,2,5,2)

Example

> levelling.resources(duration,prec,resources,int=0.5)
Earliest start times =
[1] 0.0 0.5 0.0 2.0 4.5 1.0 3.5 2.5 6.5 3.5
Resources by period=
[1] 6 9 9 9 7 9 9 6 6 9 9 9 9 7 7 7 7

・ロト ・回ト ・ヨト ・ヨト

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

> resources<-c(2,3,4,3,3,4,2,2,5,2)

Example

> levelling.resources(duration,prec,resources,int=0.5) Earliest start times = [1] 0.0 0.5 0.0 2.0 4.5 1.0 3.5 2.5 6.5 3.5 Resources by period= [1] 6 9 9 9 7 9 9 6 6 9 9 9 9 7 7 7 7

ヘロト ヘアト ヘヨト ヘ

Stochastic Projects

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Figure: Levelling resources.

Juan Carlos Gonçalves Dosantos ProjectManagement

16/30

< UNIVERSIDADE DA CORUÑA

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

> max.resources<-8

Example

> resource.allocation(duration,prec,resources max.resources,int=0.5) Project duration = [1] 10 Earliest start times = [1] 1.5 0.0 0.0 3.5 5.5 1.0 5.0 1.5 8.0 3.5 Resources by period = [1] 7 7 7 8 8 8 8 7 7 7 6 7 7 7 7 4 7 5 5 5

ヘロン 人間 とくほど くほとう

UNIVERSIDADE DA CORUÑA

= 990

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

```
> max.resources<-8
```

Example

> resource.allocation(duration,prec,resources, max.resources,int=0.5) Project duration = [1] 10 Earliest start times = [1] 1.5 0.0 0.0 3.5 5.5 1.0 5.0 1.5 8.0 3.5 Resources by period = [1] 7 7 7 8 8 8 8 7 7 7 6 7 7 7 7 4 7 5 5 5

・ロト ・ 同ト ・ ヨト ・ ヨト

UNIVERSIDADE DA CORUÑA

3

Deterministic Projects Resource Management Delay Costs Allocation

A project with delays

A project with delays *P* is a tuple (N, \prec, x^0, x, C) where:

- N is the finite set of activities.
- ≺ is a binary relation over *N* satisfying asymmetry and transitivity.
- x⁰ ∈ ℝ^N is the vector of estimated durations. For every i ∈ N, x⁰_i is a non-negative real number indicating the estimated duration of activity *i*.
- $x \in \mathbb{R}^N$ is the vector of actual durations. For every $i \in N$, $x_i \ge x_i^0$ indicates the actual duration of activity *i*.
- C : ℝ → ℝ is the delay cost function. We assume that C is non-decreasing and that C(D(N, ≺, x⁰)) = 0.

・ロット (雪) (日) (日)

UNIVERSIDADE DA CORUÑA

Deterministic Projects Resource Management Delay Costs Allocation

Rules for Projects with Delays

The Proportional rule for projects with delays is defined by

$$\varphi_i(\boldsymbol{P}) = \frac{x_i - x_i^0}{\sum_{j \in \boldsymbol{N}} x_i - x_i^0} C(D(\boldsymbol{N}, \prec, \boldsymbol{x}))$$

for all $i \in N$.

The Shapley rule for projects with delays *Sh* is defined by $Sh(P) = \Phi(c^P)$

• c^P is the TU-game with set of players N given by $c^P(S) = C(D(N, \prec, (x_S, x_{N\setminus S}^0)))$, for all $S \subset N$, and

• $\Phi(c^P)$ denotes the proposal of the Shapley value for c^P .

19/30

イロト 不得 とくほ とくほう

Deterministic Projects Resource Management Delay Costs Allocation

Rules for Projects with Delays

The Proportional rule for projects with delays is defined by

$$\varphi_i(\boldsymbol{P}) = \frac{x_i - x_i^0}{\sum_{j \in \boldsymbol{N}} x_i - x_i^0} C(D(\boldsymbol{N}, \prec, \boldsymbol{x}))$$

for all $i \in N$.

The Shapley rule for projects with delays *Sh* is defined by $Sh(P) = \Phi(c^P)$

• c^P is the TU-game with set of players N given by $c^P(S) = C(D(N, \prec, (x_S, x_{N \setminus S}^0)))$, for all $S \subset N$, and

• $\Phi(c^P)$ denotes the proposal of the Shapley value for c^P .

イロト 不得 とくほ とくほう

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

- > observed.duration<-c(8,3,2,5,2,6,4,6,4,5.5)</pre>
- > cost.function<-function(x)return(max(x-8.5,0))</pre>

Example

>delay.pert(duration,prec,observed.duration,delta=NULL, cost.function) There has been a delay of = 5

ヘロト ヘ回ト ヘヨト ヘヨト

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

- > observed.duration<-c(8,3,2,5,2,6,4,6,4,5.5)
- > cost.function<-function(x)return(max(x-8.5,0))</pre>

Example

>delay.pert(duration,prec,observed.duration,delta=NULL, cost.function) There has been a delay of = 5

UNIVERSIDADE DA CORUÑA

Deterministic Projects Resource Management Delay Costs Allocation

An Example

Example

The proportional payment The truncated proportional payment Shapley rule	1 1.43 1.25 0.71	2 0.36 0.38 0.40	3 0.24 0.25 0.55	4 0.83 0.88 0.26	5 0.00 0.00 1.68	
The proportional payment The truncated proportional payment Shapley rule	6 0.83 0.88 1.68	7 0.24 0.25 0.19	8 0.48 0.5 0.45	9 0.48 0.5 0.45	10 0.12 0.13 0.32	

Stochastic Project Management Delay Costs Allocation

UNIVERSIDADE DA CORUÑA

ヘロマ ヘロマ ヘロマ ヘ

A Stochastic Project

Formally, a stochastic project is a 3-tuple (N, \prec, X^0) where:

- *N* is the finite set of activities.
- ≺ is a binary relation over N satisfying asymmetry and transitivity. For every *i*, *j* ∈ N, we interpret *i* ≺ *j* as "activity *j* cannot start until activity *i* has finished".
- X⁰ ∈ ℝ^N is the vector of random durations. For every i ∈ N, X⁰_i is a non-negative random variable describing the duration of activity *i*.

Stochastic Project Management Delay Costs Allocation

UNIVERSIDADE DA CORUÑA

э.

(ロ) (四) (日) (日) (日)

23/30

An Example

Example

 $X^{0} = (t(1,2,3), \exp(2/3), t(1/2, 5/4, 5/4), t(1/4, 7/4, 5/2), t(1,2,3))$ t(1,3/2,5), t(1,1,7), t(3,4,5), t(1/2,5/2,3), t(1,6,8)),

where t(a, b, c) denotes the triangular distribution with parameters *a*, *b*, and *c*, and exp(α) denotes the exponential distribution with parameter α .

Stochastic Project Management Delay Costs Allocation

An Example

Example

> distribution<-c("TRIANGLE","EXPONENTIAL",rep("TRIANGLE",8))</p>
> values<-</p>

matrix (c(1,3,2,2/3,0,0,1/2,5/4,5/4,1/4,5/2,7/4,1,3,2,1,5,3/2,1,7,1,3,5,4,1/2,3,5/2,1,8,6), nrow=10, ncol=3, by row=T)

>stochastic.pert(prec,distribution,values, percentile=0.95,plot.activities.times=c(7))

Average time of the project = 9.070575 Percentile duration of the project = 11.66658 Criticality index by activity 1.3 34.2 64.5 8.2 0 64.5 9.5 26 26 64.5

・ロト ・ 同ト ・ ヨト ・ ヨト

Stochastic Project Management Delay Costs Allocation

An Example

Example

> distribution<-c("TRIANGLE","EXPONENTIAL",rep("TRIANGLE",8))</p>

matrix (c(1,3,2,2/3,0,0,1/2,5/4,5/4,1/4,5/2,7/4,1,3,2,1,5,3/2,1,7,1,3,5,4,1/2,3,5/2,1,8,6), nrow=10, ncol=3, by row=T)

>stochastic.pert(prec,distribution,values, percentile=0.95,plot.activities.times=c(7))

Average time of the project = 9.070575 Percentile duration of the project = 11.66658 Criticality index by activity 1.3 34.2 64.5 8.2 0 64.5 9.5 26 26 64.5

イロト イポト イヨト イヨト

Stochastic Project Management Delay Costs Allocation

An Example

Figure: Density estimation of project duration time and earliest start and latest completion times for activities 7.

Juan Carlos Gonçalves Dosantos ProjectManagement 25/30

A stochastic project with delays

A stochastic project with delays *SP* is a tuple (N, \prec, X^0, x, C) where:

- *N* is the finite set of activities.
- ≺ is a binary relation over *N* satisfying asymmetry and transitivity.
- X⁰ ∈ ℝ^N is the vector random durations. For every *i* ∈ *N*, x⁰_i is a non-negative random variable describing the duration of activity *i*.
- $x \in \mathbb{R}^N$ is the vector of actual durations. For every $i \in N$, $x_i \ge x_i^0$ indicates the actual duration of activity *i*.
- C : ℝ → ℝ is the delay cost function. We assume that C is non-decreasing and that C(D(N, ≺, 0)) = 0.

Stochastic Project Management Delay Costs Allocation

Rules for Projects with Delays

The Proportional rule for projects with delays is defined by

$$\varphi_i(SP) = \frac{x_i - \mathbb{E}(X_i^0)}{\sum_{j \in N} x_i - \mathbb{E}(X_j^0)} C(D(N, \prec, x))$$

for all $i \in N$.

The Shapley rule for projects with delays *Sh* is defined by $Sh(SP) = \Phi(c^{SP})$

• c^{SP} is the TU-game with set of players N given by $c^{SP}(S) = E(C(D(N, \prec, (x_S, X^0_{N \setminus S}))))$, for all $S \subset N$, and

• $\Phi(c^{SP})$ denotes the proposal of the Shapley value for c^{SP} .

27/30

ヘロト ヘロト ヘヨト ヘヨト

Stochastic Project Management Delay Costs Allocation

Rules for Projects with Delays

The Proportional rule for projects with delays is defined by

$$\varphi_i(SP) = \frac{x_i - \mathbb{E}(X_i^0)}{\sum_{j \in N} x_i - \mathbb{E}(X_j^0)} C(D(N, \prec, x))$$

for all $i \in N$.

The Shapley rule for projects with delays *Sh* is defined by $Sh(SP) = \Phi(c^{SP})$

• c^{SP} is the TU-game with set of players N given by $c^{SP}(S) = E(C(D(N, \prec, (x_S, X^0_{N \setminus S}))))$, for all $S \subset N$, and

• $\Phi(c^{SP})$ denotes the proposal of the Shapley value for c^{SP} .

・ロ と ・ 一日 と ・ 日 と ・ 日 と

Stochastic Project Management Delay Costs Allocation

UNIVERSIDADE DA CORUÑA

< 🗇 ►

28/30

An Example

Example

> delay.stochastic.pert(prec,distribution,values, observed.duration,percentile=NULL,delta=NULL, cost.function,compilations=1000)

Total delay of the stochastic project = 5

Stochastic Project Management Delay Costs Allocation

An Example

Example

Proportional rule Truncated proportional rule Shapley rule Shapley rule 2	1 1.43 1.25 0.59 0.49	2 0.36 0.38 0.37 0.42	3 0.24 0.25 0.61 0.64	4 0.84 0.88 0.36 0.29	5 0.00 0.00 0.17 0.07
Proportional rule Truncated proportional rule Shapley rule Shapley rule 2	6 0.83 0.88 1.36 1.52	7 0.24 0.25 0.24 0.18	8 0.48 0.5 0.51 0.48	9 0.48 0.5 0.50 0.46	10 0.12 0.13 0.31 0.47

Stochastic Project Management Delay Costs Allocation

ProjectManagement: an R package for managing projects

Juan Carlos Gonçalves Dosantos Grupo MODES, CITIC Departamento de Matemáticas Universidade da Coruña

30/30