

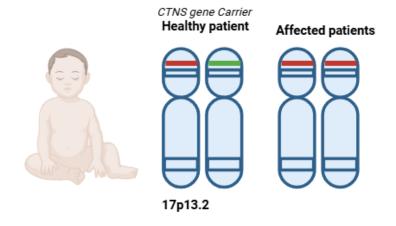
Mecanismos posts-transcripcionales en cistinosis nefropática: Integración transcriptómica y proteómica

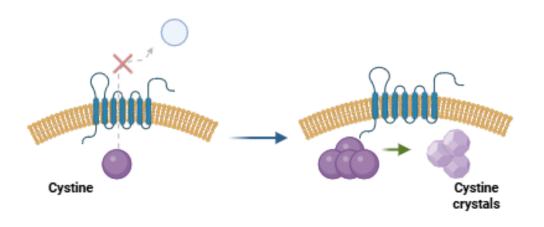
Las tecnologías ómicas ofrecen una visión completa y multinivel de la arquitectura molecular que sustenta los sistemas biológicos.

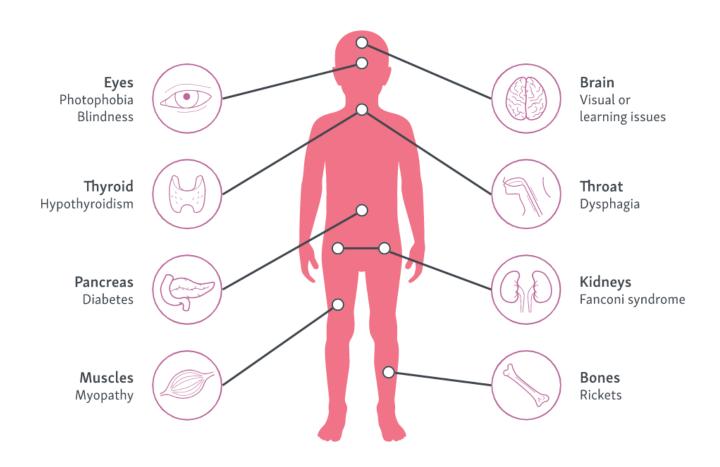
- DNA microarrays
- RNA Seq

- Proteomica Shotgun
- MALDI-MSI

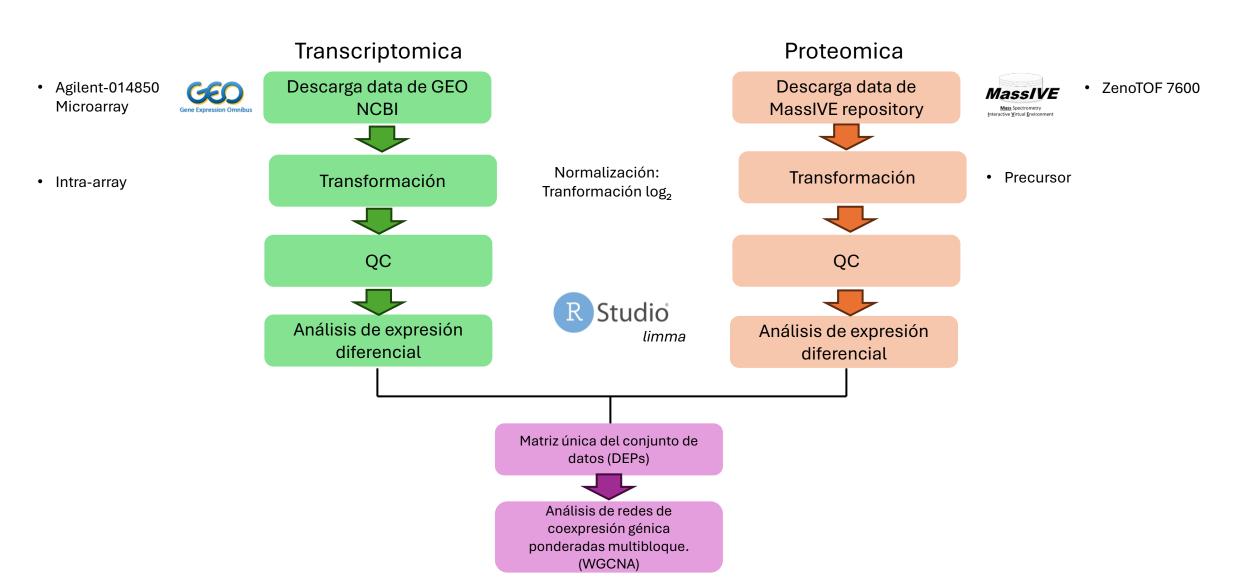
intensidades

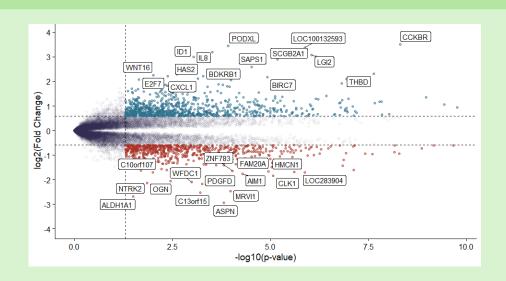

abundancias


conteos

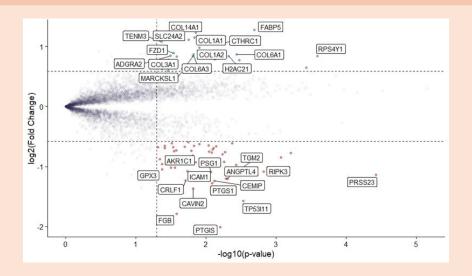

continuous integers

Cistinosis Nefropatica





- Fibroblastos cutáneos de pacientes con cistinosis
- Coriell Institute for Medical Research



- 18727 observaciones
- 1460 Transcritos diferencialmente expresados:
 - 844 sobre expresados
 - 616 infra expresados

Proteomica

- 5026 observaciones
- 92 Proteínas diferencialmente expresadas
 - 39 sobre reguladas
 - 53 Infra reguladas

Integración Simple											
		Transcriptómica				Proteómica					
ID	Regulación	log2FC	FC ²	p-value ¹	Sig. ¹	log2FC	FC ²	p-value ¹	Sig. ¹		
FZD1	Up	0.775	1.71	4.98e-05	***	0.889	1.85	2.90e-02	*		
FABP5	Up	0.992	1.99	1.49e-02	*	1.278	2.42	2.05e-03	**		
DRAP1	Up	0.589	1.50	5.13e-03	**	0.603	1.52	2.03e-02	*		
HMGN2	Up	1.023	2.03	8.82e-03	**	0.739	1.67	3.79e-02	*		
COL3A1	Up	0.741	1.67	1.02e-02	*	0.829	1.78	2.63e-02	*		
EPHX1	Down	-0.681	0.62	8.57e-06	***	-0.692	0.62	7.83e-03	**		
DHRS3	Down	-0.726	0.60	4.97e-03	**	-0.745	0.60	2.87e-02	*		
1. Sig.: *p < 0.001, p < 0.05. p-values. ² FC: Fold Change											

Análisis de redes de coexpresión génica ponderadas multibloque (WGCNA)

BMC Bioinformatics

Software

Open Access

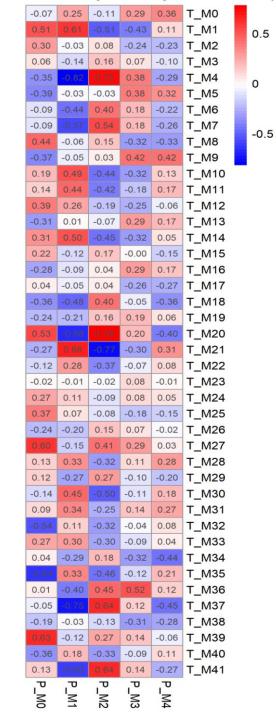
WGCNA: an R package for weighted correlation network analysis Peter Langfelder¹ and Steve Horvath*²

Address: ¹Department of Human Genetics, University of California, Los Angeles, CA 90095, USA and ²Department of Human Genetics and Department of Biostatistics, University of California, Los Angeles, CA 90095, USA

Email: Peter Langfelder - Peter.Langfelder@gmail.com; Steve Horvath* - shorvath@mednet.ucla.edu

Corresponding author

Construcción de redes por bloque



Detección de módulos dentro de cada bloque

blockwiseModules

Integración entre bloques

Identificar módulos de genes (T_Mn) y proteínas (P_Mn) con patrones de coexpresión.

		Módulos relevantes del WGCNA multibloque.										
		Pares de módulos transcriptómicos y proteómicos.										
		Modules T	Modules P	r (Pearson)	p-value							
		T_M41	P_M4	-0.81678148	0.000655077							
_	*	T_M10	P_M1	-0.76767276	0.002184742							
<u></u>	*	T_M35	P_M4	-0.75060017	0.003113388							
lg old		T_M30	P_M4	-0.67875908	0.010745766							
su retevancia biotogica		T_M33	P_M3	-0.63577617	0.019514223							
		T_M18	P_M4	-0.60458265	0.028610193							
	*	T_M1	P_M4	-0.56778645	0.04295511							
ns		T_M40	P_M3	0.60368584	0.028910822							
lod s		T_M38	P_M4	0.61434304	0.025485058							
		T_M24	P_M3	0.6296228	0.021108652							
		T_M18	P_M1	0.63690712	0.019231228							
	*	T_M35	P_M1	0.64498898	0.017297054							
^ <u></u>	*	T_M10	P_M4	0.68314231	0.010058758							
		T_M41	P_M1	0.72038733	0.00547755							
		T_M30	P_M1	0.78104714	0.00162136							

T_M1/P_M4 →

Relación funcional que vincula la regulación del ciclo celular y la estabilidad genómica con la respiración mitocondrial y procesos oxidativos.

T_M10/P_M1

Relación funcional que vincula la regulación del ciclo celular y la estabilidad genómica con la respiración mitocondrial y el metabolismo energético.

T_M10/P_M4

Procesos de regulación génica con respiración celular mitocondrial

T_M35/P_M4

Genes relacionados con la estructura de la cromatina y los nucleosomas, junto con proteínas mitocondriales de respiración celular

T_M35/P_M1 →

Integra la regulación post-transcripcional y translacional a nivel transcriptómico con los procesos centrales de expresión génica mediados por complejos ribonucleoproteicos y subunidades ribosómicas.

Conclusiones

- Identificamos siete moléculas superpuestas, con sobreexpresión de FZD1, FABP5, DRAP1, HMGN1 y COL3A1, y subexpresión de EPHX1 y DHRS3.
- Estas moléculas señalan tres ejes funcionales principales: remodelación celular (FZD1, COL3A1), metabolismo (FABP5, EPHX1, DHRS3) y regulación epigenética (DRAP1, HMGN1).
- La combinación de estos hallazgos con el enriquecimiento funcional de WGCNA proporcionó una visión más robusta a nivel de sistema, vinculando la división celular, la respiración mitocondrial, el metabolismo de ácidos nucleicos y la remodelación de la cromatina.
- Destacar que la integración multi-ómica combinada con el análisis basado en redes es esencial para revelar las vías coordinadas de señalización, metabolismo y regulación génica que subyacen a la fisiopatología de la cistinosis.

Thanks! (:)