El impacto de la Obligación de Desembarque de la UE en las estrategias de pesca de la flota de arrastre costera española

Santiago Arce Pilo

Índice

- Introducción
- Metodología
- Resultados y discusión
- Conclusiones

Section 1

Introducción

Introducción: Gestión pesquera

• "El proceso integrado de recolección de información, análisis, planificación, consulta, adopción de decisiones. asignación de recursos y formulación y ejecución, así como imposición cuando sea necesario, de reglamentos o normas que rijan las actividades pesqueras para asegurar la productividad de los recursos y la consecución de otros objetivos" (FAO,2002)

Introducción: Descarte pesquero

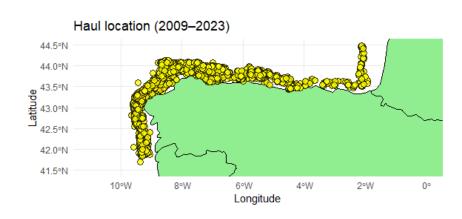
- Parte de la captura que se devuelve al mar, ya sea muerta o moribunda, en lugar de ser desembarcada.
- Puede ocurrir por varias razones:
 - Los ejemplares capturados no cumplen con la talla mínima legal.
 - La especie no tiene valor comercial.
 - Sobrecuota
 - Los pescadores priorizan especies de mayor valor económico.

Introducción: Landing Obligation

Landing Obligation (Obligación de desembarque):

- Medida implementada por la Unión Europea dentro de la Política Pesquera Común (PPC).
- Introducida en 2015 de forma gradual (2016 para la especie objeto de estudio)
- Objetivo principal: reducir los descartes en la pesca y promover un aprovechamiento más responsable de los recursos marinos.
- Va dirigido:
 - Todas las capturas de especies sujetas a cuota deben ser desembarcadas, aunque no sean comercialmente valiosas o no cumplan la talla mínima.
 - Creación de una nueva categoría (BMS) sujeta a esta normativa y que no puede ser comercilizada para consumo humano.

Introducción: Objetivos del estudio


- Identificar el enfoque estadístico adecuado para modelar el proceso de descarte.
- Analizar los factores que influyen en el descarte.
- Evaluar el impacto de la Obligación de Desembarque.

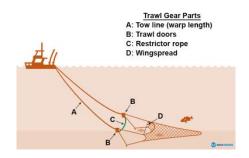
Section 2

Metodología

Materiales: Área de Estudio

• Área de estudio: Caladero nacional Cantábrico-Noroeste

Materiales: Diseño del Muestreo


 Datos científicos del programa de muestreo de observadores a bordo coordinado por el IEO-CSIC

Periodo: 2009-2023

Diseño multietápico (Buques
 → Mareas → Lances)

Métier: Baca

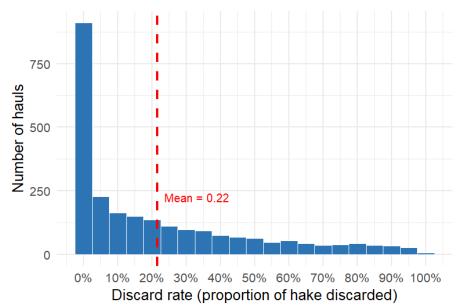
- Arte de arrastre dirigido a peces demersales
- Especies objetivo: Jurel, Caballa, Gallo, Merluza
- Baja selectividad \rightarrow captura múltiples especies
- Especie objeto de estudio : Merluza (merluccius merluccius)

Materiales: Datos

- Peso descartado: fracción no retenida de las capturas.
- Peso capturado: peso de la biomasa capturada en la operación de pesca.
- Unidad muestral: Lance o operación de pesca.
- Variables:
 - Medioambientales:profundidad media,mes ,hora, latitud y longitud
 - Técnicas: duración del lance, velocidad de pesca, distancia a la costa y codigo de barco.
 - Poblacionales: reclutamiento (ICES, 2024).
 - Periodo: divide los datos en dos secciones 2009-2015 y 2016-2023

Tasa de descarte

La tasa de descarte se define como:


$$\mathsf{Tasa} \ \mathsf{de} \ \mathsf{descarte} = \frac{\mathsf{Peso} \ \mathsf{descartado} \ \mathsf{en} \ \mathsf{kg}}{\mathsf{Peso} \ \mathsf{total} \ \mathsf{capturado} \ \mathsf{en} \ \mathsf{kg}}$$

- Permite comparaciones entre embarcaciones y periodos.
- Adecuada para evaluar el efecto de políticas.
- Interpretación directa.

Características de los datos:

- Alta proporción de ceros: 35% de los lances sin captura
- Valores positivos en (0,1) cuando hay descarte.

Distribucción de la tasa de descarte

Modelado en dos fases

- La tasa de descarte tiene muchos ceros (sin descarte) y valores positivos (con descarte).
- Un modelado directo puede ser inadecuado debido a esta concentración de ceros.

Idea: separar el proceso en dos componentes:

- Probabilidad de que ocurra un descarte: se modela si hay o no descarte (variable binaria).
- Magnitud del descarte: se modela la proporción descartada solo cuando el descarte es positivo.

Ventajas:

- Captura la estructura real de los datos.
- Permite usar distribuciones adecuadas en cada fase.
- Facilita la interpretación de los efectos de las variables explicativas.

1ª Fase: Probabilidad de descarte

- Se utiliza un GAM con distribución Binomial.
- Variable dependiente: ocurrencia de descarte

$$Y_i = egin{cases} 0 & ext{sin descarte}, \ 1 & ext{con descarte}. \ Y_i \sim ext{Bernoulli}(p_i) \end{cases}$$

Modelo:

$$\operatorname{logit}(p_i) = \beta_0 + \sum_j f_j(X_{ij})$$

- p_i representa la probabilidad estimada de que $Y_i = 1$ (que haya descarte) en un lance, según las covariables.
- Captura la **presencia/ausencia de descarte** y permite interpretar los efectos de las covariables sobre la probabilidad de que ocurra.

2^a Fase: Proporción de descarte (solo si $Y_i = 1$)

- Se utiliza un GAM con distribución Beta.
- Variable dependiente: tasa de descarte positiva

$$Z_i = rac{\mathsf{Peso} \; \mathsf{descartado}_i}{\mathsf{Peso} \; \mathsf{total} \; \mathsf{capturado}_i}, \quad 0 < Z_i < 1$$
 $Z_i | Y_i = 1 \sim \mathsf{Beta}(\mu_i, \phi)$

Modelo:

$$\operatorname{logit}(\mu_i) = \gamma_0 + \sum_k g_k(X_{ik})$$

 Permite analizar la magnitud del descarte condicional a que haya ocurrido, usando una distribución adecuada para proporciones.

Evaluación del efecto de la Obligación de Desembarque

Se utiliza el **modelado en dos fases** incorporando la variable **Periodo**, definida como:

- **Periodo** = $\mathbf{1}$ si los datos corresponden a 2016–2023 (post-LO)
- **Periodo** = $\mathbf{0}$ si los datos corresponden a 2009–2015 (pre-LO)
 - 1ª Fase: Probabilidad de descarte

$$logit(p_i) = \beta_0 + \sum_j f_j(X_{ij}) + \delta \cdot Periodo_i + \sum_j f_j(X_{ij}) \cdot Periodo_i$$

• 2^a Fase: Proporción de descarte (solo si $Y_i = 1$)

$$logit(\mu_i) = \gamma_0 + \sum_k g_k(X_{ik}) + \delta' \cdot Periodo_i + \sum_k g_k(X_{ik}) \cdot Periodo_i$$

- Así se pueden evaluar:
 - δ , δ' : cambios globales entre periodos (efecto directo de la LO).
 - $\sum f_j(X_{ij}) \cdot \operatorname{Periodo}_i$, $\sum g_k(X_{ik}) \cdot \operatorname{Periodo}_i$: cambios diferenciales de cada covariable antes y después de la LO.

Modelo inicial binomial

$$\begin{split} \mathsf{logit}(p_i) &= \beta_0 + \beta_1 \cdot \mathsf{Light} + s_1(\mathsf{Haul_Duration}) \\ &+ s_2(\mathsf{Speed}) + s_3(\mathsf{MeanDepth}) \\ &+ s_4(\mathsf{Recruitment}) + s_5(\mathsf{DistanceCoast}) \\ &+ s_6(\mathsf{Month}) + s_7(\mathsf{Hour}) + s_8(\mathsf{Longitude},\, \mathsf{Latitude}) \\ &+ b_1(\mathsf{Vessel}) + b_2(\mathsf{Home_Port}) \end{split}$$

- Y_i : variable dependiente binaria (1 si hay descarte, 0 si no)
- β_0, β_1 : coeficientes paramétricos de efectos lineales
- s_1, \ldots, s_8 : funciones suaves de covariables continuas (splines penalizados)
- b₁, b₂: efectos aleatorios para variables categóricas (Vessel, Home_Port)
- p_i : probabilidad de que ocurra un descarte

Modelo inicial beta

$$\begin{split} & \mathsf{logit}(\mu_i) = \gamma_0 + \beta_1 \cdot \mathsf{Light} \\ + s_1(\mathsf{Haul_Duration}) + s_2(\mathsf{Speed}) + s_3(\mathsf{MeanDepth}) \\ & + s_4(\mathsf{Recruitment}) + s_5(\mathsf{DistanceCoast}) \\ + s_6(\mathsf{Month}) + s_7(\mathsf{Hour}) + s_8(\mathsf{Longitude}, \, \mathsf{Latitude}) \\ & + b_1(\mathsf{Vessel}) + b_2(\mathsf{Home_Port}) \end{split}$$

- μ_i : proporción esperada de descarte
- Estructura de covariables idéntica a la fase binomial

Selección y validación de modelos

- Se parte de un modelo saturado con todas las covariables candidatas.
- **Selección** mediante AIC, BIC y significación, manteniendo coherencia ecológica.
- Revisión de **smooths** (edf pprox 1
 ightarrow lineal)
- Se revisa el k-index
- Se evalúa la concurvity (análoga a colinealidad) para descartar redundancias.
- Validación con diagnósticos de residuos y, en el modelo binomial, ROC/AUC.

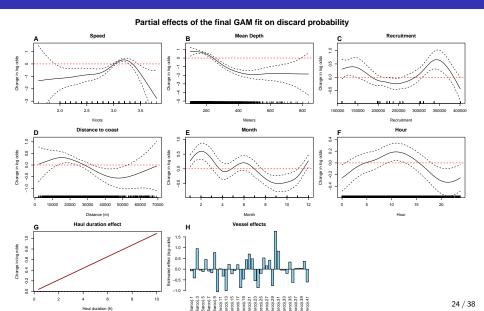
Section 3

Resultados

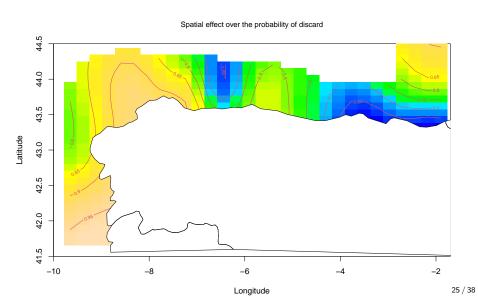
Factores generales del descarte

El modelo final selecionado para la probabilidad de descarte es:

$$\mathsf{logit}(p_i) = \beta_0 + \beta_1 \cdot \mathsf{Haul} \; \mathsf{Duration} + s_1(\mathsf{Speed}) + s_2(\mathsf{MeanDepth}) + s_3(\mathsf{Recruitment}) + s_4(\mathsf{DistanceCoast}) + s_5(\mathsf{Month}) + s_6(\mathsf{Hour}) + s_7(\mathsf{Longitude}, \; \mathsf{Latitude}) + b_1(\mathsf{Vessel})$$

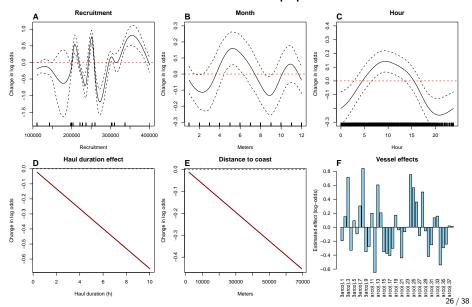

El modelo seleccionado para la proporción descartada es:

$$\begin{split} \mathsf{logit}(\mu_i) &= \gamma_0 + \beta_1 \cdot \mathsf{Haul} \; \mathsf{duration} + \\ \beta_2 \cdot \mathsf{Distance} \; \mathsf{to} \; \mathsf{coast} + s_1(\mathsf{Recruitment}) + s_2(\mathsf{Month}) \\ &+ s_3(\mathsf{Hour}) + b_1(\mathsf{Vessel}) \end{split}$$


Factores generales: Comparación de modelos

Métrica	Probabilidad (Binomial)	Proporción (Beta)
Grados de libertad	72.36	68.55
R-cuadrado ajustado	0.326	0.259
Desviancia explicada	28.6%	32.4%
Tamaño de la muestra	2529	1665

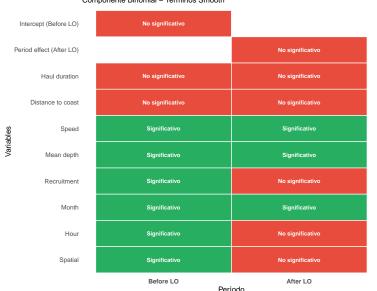
Factores generales: Efectos sobre la probabilidad descartada.



Factores generales: Efectos sobre la probabilidad descartada.

Factores generales: Efectos sobre la proporción descartada.

Partial effects of the final GAM fit on proportion discard

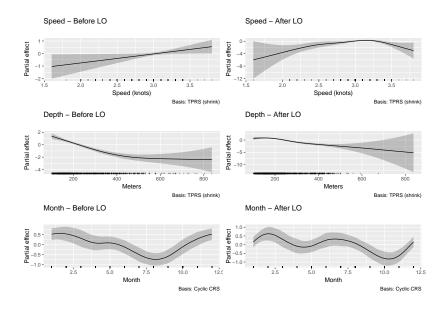


Efecto de la Landing Obligation: Rendimiento de los modelos

Métrica	Probabilidad por periodo (Binomial)	Proporción por periodo (Beta)
Grados de libertad	72.36	68.55
R-cuadrado ajustado	0.371	0.217
Desviancia explicada	33.9%	26.6%
Tamaño de la muestra	2529	1665

Efecto de la Landing Obligation: Probabilidad de descarte

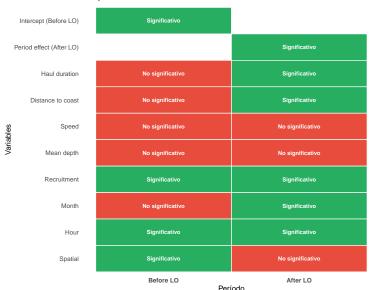
 $Significancia\ Estadística:\ Before\ vs\ After\ LO\ (\alpha=0.05)$ $Componente\ Binomial\ -\ Términos\ Smooth$



Resultado

No significativo

Significativo


Efecto de la Landing Obligation: Probabilidad de descarte

Efecto de la Landing Obligation: Proporcion descartada

Significancia Estadística: Before vs After LO (a = 0.05)

Componente Beta

Resultado

No significativo
Significativo

Efecto de la Landing Obligation: Proporcion descartada

Section 4

Discusión

Factores generales del descarte

- Variables significativas distintas en cada fase: apoya la necesidad de un modelo en dos fases.
- Probabilidad de descarte: más influenciada por variables medioambientales y poblacionales y menor sensibilidad a variables técnicas.
- Proporción descartada: limitada por un número menor de factores ,incluyendo técnicos.
- Patrones Clave:
 - Zonas poco profundas (Rías Baixas, Golfo Ártabro) son "hotspots" de concentración de juveniles
 - Temporalidad marcada: más descarte en invierno/primavera y en horas de mañana.
 - El reclutamiento es factor transversal que potencia ambos procesos.

Impacto de la LO

Patrón general

- No hay evidencia de cambios en probabilidad de descarte antes y después de la LO.
- La proporción media descartada se reduce de un 44% a un 27% después de la normativa.
- Adaptación estratégica de la flota
- Prácticas más selectivas

Cambios en los efectos de las variables:

- Variables ambientales
 - Menor peso de la posición espacial
 - Profundidad: menor probabilidad a igual nivel
 - Estacionalidad se refuerza (picos invierno/verano, mínimo otoño)
- Variables técnicas
 - Velocidad: menor probabilidad post-LO
 - Lances largos no implican mayor descarte en el periodo post-LO
 - Distancia a costa: mayor segregación de riesgo

Limitaciones del estudio

- Capacidad de los modelos limitada: La desvianza explicada es reducida para la mayor parte de los modelos.
- Gran parte de la variabilidad sigue sin explicarse: Indicando que faltan factores relevantes no incluidos en el modelo.
- Limitaciones de los datos: falta de variables clave (variables biológicas, decisiones del patrón, más información de condiciones ambientales).
- Trade-off del modelado: añadir más variables o interacciones podría mejorar el ajuste, pero reduciría la interpretabilidad y utilidad para la gestión pesquera.

Section 5

Conclusiones

Conclusiones

Capacidad explicativa moderada

- Probabilidad de descarte: ~26 %
- Proporción descartada: ~29 %
- Aun así, los modelos aportan información relevante sobre los factores clave.

Validez del modelo en dos fases

- Diferentes variables influyen en probabilidad y en proporción.
- Un único modelo no captaría bien estos procesos.

Efecto de la Obligación de Desembarque (LO)

- La probabilidad de descarte se mantuvo estable.
- La proporción descartada disminuyó tras la LO.
- Los cambios fueron graduales, no drásticos.

Cambio en los predictores

- Antes de la LO: predominan variables ambientales y poblacionales.
- Después de la LO: ganan peso las variables técnicas, reflejando ajustes operativos.

¡Gracias por su atención!

Trabajo Fin de Máster Máster en Técnicas Estadísticas Universidad de Vigo

Santiago Arce Pilo

Preguntas y comentarios son bienvenidos