
The importance of testing R code
Nora M. Villanueva

Galicia Research Center in Advanced Telecommunications

V Xornadas de usuarios de R Galicia
Santiago de Compostela, Spain. 25 October 2018

Outline

1. Gradiant

2. Software development

3. Software testing

➢ Unit tests

4. References

Gradiant, ICT technology centre in Spain

Since 2008, focused on technological development and knowledge
transfer to industry

Our model

TRL1 TRL2 TRL3 TRL4 TRL5 TRL6 TRL7 TRL8 TRL9

Research Development Innovation

Focus on...

• Communication Subsystems

• IoT (Internet of Things)

• Integrated and Onboard Systems

• Networks

• Wireless Communications

• Data Analytics and Big Data

• Intelligent video Analysis

• Learning Analytics and Adaptive
Learning

• Bioinformatics

• Biometric Systems

• Multimedia Security

• Cloud Security

• Privacy by Design

• Privacy Protection Systems

Connectivity

Intelligence

Security

Focus on...

Connectivity

Intelligence

Security

eLearning@Gradiant:

● Team consists of 13 members
● International projection
● Working with several publishers
● Learning Analytics & Talent

Management
● Adaptive Learning & Adaptive

Instruction
● Gamification & Intelligent

Tutoring

UMI Gradiant with Netex

smartED product

https://www.youtube.com/watch?v=jOV6apJ26Fg

Software Development

Software development

● Academy contributes with new findings to society.

● Company develops a product

Time

Bugs

Money

Multidisciplinary Team working together

Software development. Good practices

● Pair Programming

● Refactoring

● Code Reviews

● Continuous integration

● Test Driven Development

Bugs, money, time

Extreme Programming

Software Testing

Software Testing

Objectives
● Attempt to execute a program or app with the intent of

finding software bugs

● Provide objective, independent information about the
quality of software and risk of its failure to users.

Levels of Testing

3.

1.3. System Tests

2. Integration Tests

1. Unit Tests
2.

When should one do software testing?

THEN

1. Test Driven Development (TDD)

TESTS IMPLEMENTATION

2. Test After Development (TAD)

IMPLEMENTATION TESTS
THEN

Unit Tests

Measure student’s progress:Intelliget

Workflow

1. Write a function
2. Load it
3. Experiment with it in the

console to see if it works
4. Repeat

● Recommend testthat package

Using Unit Tests. Tools and examples

Using Unit Tests. testthat package

Ideally, tests should be written once and run many times.

Tests are organised hierarchically: expectations are grouped into
tests which are organised in files

Using Unit Tests. Tools

Using Unit Tests. testthat package

➢ expect_true, expect_false, expect_null: for common return types
➢ expect_length: the length of a vector
➢ expect_gt, expect_lt : for numeric inequalities
➢ expect_named: for the names of variables
➢ expect_type, expect_is: for the type/class of variables
➢ expect_error, expect_warning, expect_message: for testing

feedback

Using Unit Tests. Different expectations

Using Unit Tests. Different expectations

Using Unit Tests. Organising tests using contexts

Using Unit Tests. Running test

> test_dir("/Users/nora/gradiant/xornadasUsuariosRGalicia18/code")

> test_file("test-hypotenuse.R")

Using Unit Tests. Running test

Using Unit Tests. Integrating test into a package

tests/testthat.R

> library(testthat)
> library(clustcurv)

Using Unit Tests. Integrating test into a package

● Running all test into the
package

● Continuous Integration
ServicesTravisCI,Jenkins,
...

Using Unit Tests. Integrating test into a package

Using Unit Tests. Integrating test into a package

● Ensuring DESCRIPTION
● Dependencies declared in

DESCRIPTION and NAMESPACE
● Functions are correctly described
● All necessary files are present
● Running all examples
● Running all the test

Using Unit Tests. Tools

> library(testthat)

> library(RUnit)

> library(shinytests)

> library(covr)

> library(usethis)

References
● Cotton, R. (2016). assertive: Readable Check Functions to Ensure

Code Integrity, 2016. R package version 0.3--0.
● Cotton, R. (2017). Testing R Code. A Chapman and Hall.
● Hester, J. (2015). covr: Test coverage for Packages. R package

version 1.2.0.
● Wickham, H. (2011). testthat: Get Started with testing. The R

journal, 3, 5--10.
● Wickham, H. (2015). R package. O'Reilly.
● Wickham, H. and Chang, W. (2016). devtools: Tools to make

Developing R packages Easier. R package version 1.10.0.

Oriented to Industry requirements

(+34) 986 120 430 | gradiant@gradiant.org | www.gradiant.org

Nora M. Villanueva nmvillanueva@gradiant.org

mailto:nmvillanueva@gradiant.org

