Set estimation with alphahull and alphashape3d
 \checkmark Xornada de usuarios R en Galicia

Beatriz Pateiro López

October 25th, 2018

Set estimation

Point sets are a fundamental source of information in many disciplines:

- samples from probability distributions

Set estimation

Point sets are a fundamental source of information in many disciplines:

- samples from probability distributions
- portions of realizations of point processes observed within bounded sampling windows

Set estimation

Point sets are a fundamental source of information in many disciplines:

- samples from probability distributions
- portions of realizations of point processes observed within bounded sampling windows
- have substantive meaning (for example, landmarks in industrial parts or in biological structures)

Set estimation

- The term set estimation refers to the statistical problem of estimating an unknown set S from a random sample of points $\mathcal{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ whose distribution is closely related to S.

Set estimation

- The term set estimation refers to the statistical problem of estimating an unknown set S from a random sample of points $\mathcal{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ whose distribution is closely related to S.

Set estimation

- The term set estimation refers to the statistical problem of estimating an unknown set S from a random sample of points $\mathcal{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ whose distribution is closely related to S.
- Apart from the set itself, we may be interested in approximating a particular characteristic of the set, the length in \mathbb{R}^{2} or surface area in general dimension \mathbb{R}^{d}

Set estimation

- There are different geometrical structures that can capture the shape of a set from a sample of points taken from it.
- The extent to which these structures manage faithfully to reproduce the original set depends heavily on the geometrical characteristics of the set.

Set estimation

Let S be a nonempty compact subset of \mathbb{R}^{d} and let $\mathcal{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample from X, where X denotes a random variable in \mathbb{R}^{d} with distribution P_{X} and support S.

- Devroye-Wise estimator: $S_{n}=\bigcup_{i=1}^{n} B\left(X_{i}, \varepsilon_{n}\right)$
- Convex hull estimator: $\operatorname{conv}\left(\mathcal{X}_{n}\right)$
- α-convex hull estimator: $\boldsymbol{C}_{\alpha}\left(\mathcal{X}_{n}\right)=\left(\mathcal{X}_{n} \oplus \alpha \stackrel{B}{B}\right) \ominus \alpha \AA$

Set estimation

Let S be a nonempty compact subset of \mathbb{R}^{d} and let $\mathcal{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample from X, where X denotes a random variable in \mathbb{R}^{d} with distribution P_{X} and support S.

- Devroye-Wise estimator: $S_{n}=\bigcup_{i=1}^{n} B\left(X_{i}, \varepsilon_{n}\right)$
- Convex hull estimator: $\operatorname{conv}\left(\mathcal{X}_{n}\right)$
- α-convex hull estimator: $C_{\alpha}\left(\mathcal{X}_{n}\right)=\left(\mathcal{X}_{n} \oplus \alpha \AA\right) \ominus \alpha \AA$

Set estimation

Let S be a nonempty compact subset of \mathbb{R}^{d} and let $\mathcal{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample from X, where X denotes a random variable in \mathbb{R}^{d} with distribution P_{X} and support S.

- Devroye-Wise estimator: $S_{n}=\bigcup_{i=1}^{n} B\left(X_{i}, \varepsilon_{n}\right)$
- Convex hull estimator: $\operatorname{conv}\left(\mathcal{X}_{n}\right)$
- α-convex hull estimator: $C_{\alpha}\left(\mathcal{X}_{n}\right)=\left(\mathcal{X}_{n} \oplus \alpha \check{B}\right) \ominus \alpha \check{B}$

Set estimation

Let S be a nonempty compact subset of \mathbb{R}^{d} and let $\mathcal{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample from X, where X denotes a random variable in \mathbb{R}^{d} with distribution P_{X} and support S.

- Devroye-Wise estimator: $S_{n}=\bigcup_{i=1}^{n} B\left(X_{i}, \varepsilon_{n}\right)$
- Convex hull estimator: $\operatorname{conv}\left(\mathcal{X}_{n}\right)$
- α-convex hull estimator: $C_{\alpha}\left(\mathcal{X}_{n}\right)=\left(\mathcal{X}_{n} \oplus \alpha \check{B}\right) \ominus \alpha \check{B}$

Set estimation

- The boundary of the α-convex hull comprises arcs of circles (in 2D), or spherical caps (in 3D), and intersections thereof.
- If now we approximate the boundary of the α-convex hull by a polygonal curve (in 2D) or by a polyhedral surface (in 3D), then we get another object that approximates the original set, called the α-shape.

Implementation

- Some of the set estimators in literature are easy to implement.
- For instance, the convex hull of a set of points in d-dimensional Euclidean space can be computed using functions in package geometry .
- The implementation of the α-convex hull, however, is not so immediate and some effort is required in order to compute it efficiently.

Implementation

- Edelsbrunner, Kirkpatrick, and Seidel (1983) proposed an algorithm to construct the α-convex hull of a finite set of points in \mathbb{R}^{2}. The algorithm is based on the closed relationship that exists between this construct and Delaunay triangulations.
- Edelsbrunner and Mücke (1994) give the algorithm to compute the α-shape in 3D. It can be computed from the α-complex of the sample, which is a subcomplex of the Delaunay triangulation. The α-shape is the polytope (in a general sense) formed by the union of all simplices of the α-complex.

Edelsbrunner, H., Kirkpatrick, D. G., and Seidel, R. (1983)
On the shape of a set of points in the plane. IEEE Trans. Inform. Theory, 29(4), 551-559.
Edelsbrunner H, Mücke E. P. (1994)
Three-dimensional Alpha Shapes. ACM Trans. Graph., 13(1), 43-72.

Implementation

- The R package alphahull computes the alpha-shape and alpha-convex hull of a given sample of points in the plane. The package also includes, among others, a function that returns the Delaunay triangulation and its dual Voronoi diagram and a function to calculate the Devroye-Wise estimator.
- The R package alphashape3d comprises functions to compute, represent and display the α-shape of a given sample of points in three-dimensional Euclidean space.
alphahull package: α-convex hull

alphahull package: α-convex hull

> alpha <- 0.1
> ahull.obj <- ahull(x, alpha = alpha)
> plot(ahull.obj)

alphahull package: α-convex hull

- The boundary of $C_{\alpha}\left(\mathcal{X}_{n}\right)$ is completely determined. It is formed by the union of arcs of balls of radius α besides possible isolated points.
- We can compute the perimeter of the α-convex hull.

The extremes of an arc can be written as $c+\alpha A_{\theta}(v)$ and $c+\alpha A_{-\theta}(v)$, bring $A_{\theta}(v)$ the clockwise rotation of angle θ of the unitary vector v. The length of each arc is $2 \theta \alpha$

- We can compute the area of the α-convex hull.

The area of $C_{\alpha}\left(\mathcal{X}_{n}\right)$ is the sum of the areas of the connected components

> ahull.obj\$length
> areaahull(ahull.obj)

alphahull package: α-shape

> alpha <- 0.1
> ashape.obj <- ashape(x, alpha = alpha)
> plot(ashape.obj)

alphahull package: Devroye-Wise estimator

- We can compute the area of the DW estimator (not included in the library).
- The volume of the union of a family of 3D balls can be computed using the Structural Bioinformatics Library (SBL), a C++/Python API by Cazals and Dreyfus (2016).

alphahull package: Voronoi diagram and Delaunay triangulation

- The Voronoi diagram of \mathcal{X}_{n} is a covering of the plane by n regions V_{i}, where for $i=1, \ldots, n$,

$$
V_{i}=\left\{x \in \mathbb{R}^{2}:\left\|x-X_{i}\right\| \leq\left\|x-X_{j}\right\| \text { for all } X_{j} \in \mathcal{X}_{n}\right\} .
$$

- The Delaunay triangulation of \mathcal{X}_{n} is defined as the straight line dual to the Voronoi diagram of \mathcal{X}_{n}, that is, there exists a straight line edge between X_{i} and X_{j} if and only if V_{i} and V_{j} are Voronoi neighbours.

0

0
> delvor.obj <- delvor(x)
> plot(delvor.obj)

alphahull package: Voronoi diagram and Delaunay triangulation

- The Voronoi diagram of \mathcal{X}_{n} is a covering of the plane by n regions V_{i}, where for $i=1, \ldots, n$,

$$
V_{i}=\left\{x \in \mathbb{R}^{2}:\left\|x-X_{i}\right\| \leq\left\|x-X_{j}\right\| \text { for all } X_{j} \in \mathcal{X}_{n}\right\}
$$

- The Delaunay triangulation of \mathcal{X}_{n} is defined as the straight line dual to the Voronoi diagram of \mathcal{X}_{n}, that is, there exists a straight line edge between X_{i} and X_{j} if and only if V_{i} and V_{j} are Voronoi neighbours.

alphahull package: Voronoi diagram and Delaunay triangulation

- The Voronoi diagram of \mathcal{X}_{n} is a covering of the plane by n regions V_{i}, where for $i=1, \ldots, n$,

$$
V_{i}=\left\{x \in \mathbb{R}^{2}:\left\|x-X_{i}\right\| \leq\left\|x-X_{j}\right\| \text { for all } X_{j} \in \mathcal{X}_{n}\right\}
$$

- The Delaunay triangulation of \mathcal{X}_{n} is defined as the straight line dual to the Voronoi diagram of \mathcal{X}_{n}, that is, there exists a straight line edge between X_{i} and X_{j} if and only if V_{i} and V_{j} are Voronoi neighbours.

```
> delvor.obj <- delvor(x)
> plot(delvor.obj)
```

alphashape3d package: α-shape in 3D

- Sample
$\rightarrow \alpha=0.5$
$\rightarrow \alpha=0.3$
> alphashape3d <- ashape3d(x, alpha $=0.5$)
> plot(alphashape3d)
alphashape3d package: α-shape in 3D
- The library alphashape3d also computes the values of several attributes of the α-shape.
- We can identify the connected components of the α-shape

alphashape3d package: α-shape in 3D

- The function volume_ashape calculates the volume of the α-shape of a point cloud.
- We can also compute the volume of each connected component.
- The function inashape3d checks whether one or several points belong to the interior of the α-shape.
- the function surfaceNormals calculates the normal vectors to the triangles in the boundary of the α-shape.

Some comments on alphahull and alphashape3d

- Beatriz Pateiro-Lopez and Alberto Rodriguez-Casal (2016). alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane. R package version 3.0.
\square Pateiro-López, B. and Rodriguez-Casal. A. (2010)
Generalizing the Convex Hull of a Sample: The R Package alphahull. Journal of Statistical Software, 34(5)
- Thomas Lafarge and Beatriz Pateiro-Lopez (2017). alphashape3d: Implementation of the 3D Alpha-Shape for the Reconstruction of 3D Sets from a Point Cloud. R package version 1.3.

Lafarge, T., Pateiro-López, B. , Possolo, A., Dunkers, J. P. (2014)
R implementation of a polyhedral approximation to a 3D set of points using the α-shape. Journal of Statistical Software, 56(4)

Some comments on alphahull and alphashape3d

Some comments on alphahull and alphashape3d

\square Ural, S. et al. (2015)
Road and roadside feature extraction using imagery and Lidar data for transportation operation, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences II-3/W4
alphahull: delineation of buildings using the alpha-shape algorithm

Some comments on alphahull and alphashape3d

Miyata, N. et al. (2013)
A Measuring and Analysis Method of Coupled Range of Motion of the Human Hands. IEEE International Conference on Systems, Man, and Cybernetics, 454, 60-69.
alphahull: estimation of the area of the range of motion in two dimensional plane

Some comments on alphahull and alphashape3d

Kuhn, T. et al. (2011)
Adaptive Radiation within Marine Anisakid Nematodes: A Zoogeographical Modeling of Cosmopolitan, Zoonotic Parasites. PLoS ONE, 6(12), e28642.
alphahull: species-specific distribution patterns of Anisakis spp.

Some comments on alphahull and alphashape3d

Possolo, A. (2016)
Spatial statistics: Marks, maps, and shapes. Quality Engineering, 28(1), 69-90
alphashape3d: α-shapes and surface normals of cement particles (modeling and measuring the structure and properties of cement-based materials)

Some comments on alphahull and alphashape3d

Colaco, A. F. et al. (2017)
Orange tree canopy volume estimation by manual and LiDAR-based methods. Advances in Animal Biosciences, 8(2), 477-480
alphashape3d: tree canopy volume estimation using α-shapes

Thanks

Beatriz Pateiro López (beatriz.pateiro@usc.es)

