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272 observations measuring the waiting time between eruptions for
the Old Faithful geyser in Yellowstone National Park, Wyoming,
USA.

faithful {datasets}
hist {graphics}

Azzalini, A. and Bowman, A. W. (1990)
A look at some data on the Old Faithful geyser.
Applied Statistics, 39, 357–365.
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Acid–neutralizing capacity (ANC) measured in a sample of 155
lakes in North–Central Wisconsin.

Acidity {mixAK}
norMix {nor1mix}

Crawford, S. L. (1994)
An application of the Laplace method to finite
mixture distributions.
Journal of the American Statistical Association,
89, 259–267.
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Thickness of 485 postal stamps, printed in Mexico, between 1872
and 1874 (The 1872 Hidalgo stamp issue of Mexico).

stamp {bootstrap}

Izenman, A. J. and Sommer, C. J. (1988)
Philatelic mixtures and multimodal densities.
Journal of the American Statistical Association,
83, 941–953.
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Parametric mixture

Definition

Mixture of M unimodal distributions, fm:
fM (x) =

∑M
m=1

pmfm(x).
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Estimation of the parameters of a
univariate normal, N(µi, σ

2
i ),

mixture using the Likelihood
Maximimization (fixing M = 2):
µ̂1 = 4.25; µ̂2 = 5.89;
σ̂1 = 0.26; σ̂2 = 0.85;
p̂1 = 0.48; p̂2 = 0.52.

norMixEM {nor1mix}
McLachlan, G. J. and Peel, D. (2000)
Finite Mixture Models.
John Wiley & Sons, Inc. New York.
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Parametric mixture

Testing number of components

Mixture of M unimodal distributions, fm:
fM (x) =

∑M
m=1

pmfm(x).
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H0 : M = M0 vs Ha : M = M1

(for some M1 > M0).

2(logL(f̂M1
)− logL(f̂M0

)).

Bootstrap samples are
generated from f̂M0

.

P–values (B = 100):
0.00(M0 = 1),
0.04(M0 = 2),
0.34(M0 = 3).

boot.comp {mixtools}
McLachlan, G. J. and Peel, D. (2000)
Finite Mixture Models.
John Wiley & Sons, Inc. New York.
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Kernel density estimation

Definition

Given a random sample (X1, . . . , Xn) from some unknown density
f , the KDE is given by:

f̂h(x) =
1

nh

n
∑

i=1

K

(

x−Xi

h

)

.

K is a unimodal kernel
function, e. g., N(0, 1).

h > 0 is the smoothing
parameter.
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hRT = 0.0039
hSJ = 0.0012

density {stats}
bw.SJ {stats}

Wand M. P. and Jones M. C. (1995)
Kernel Smoothing.
Chapman and Hall. London.
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Kernel density estimation

Mode tree
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The mode tree plot relates the locations of modes in density
estimates with the bandwidths used for their construction.

Minnotte, M. C. and Scott, D. W. (1993)
The mode tree: A tool for visualization of nonparametric density features.
Journal of Computational and Graphical Statistics, 2, 51–68.
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Kernel density estimation

Mode forest
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The mode forest looks simultaneously at a large collection of mode
trees generated from the empirical distribution of the original data.

Minnotte M. C., Marchette D. J. and Wegman, E. J. (1998).
The Bumpy Road to the Mode Forest.
Journal of Computational and Graphical Statistics, 7, 239–251.
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Kernel density estimation

Critical bandwidth

H0 : j ≤ k vs Ha : j > k,
where j is the real number
of modes.

hk = min{h : f̂h has at
most k modes}.

Bootstrap samples are
generated from f̂hk

.

Reject if hk < Qα(h
∗

k).

P–values (B = 500):
0.006(k = 1); 0.820(k = 2).
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h1 = 8.065
h2 = 1.833

Silverman, B. W. (1981).
Using kernel density estimates to investigate multimodality.
Journal of the Royal Statistical Society. Series B, 43, 97–99.
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Kernel density estimation

SiZer

For each pair (x, h), with h > 0, the SiZer computes the
confidence interval for f̂ ′

h (with α = 0.05).
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sparse data
zero grad
+ve grad
−ve grad

If the interval:

is above zero, the smoothed curve
is significantly increasing (blue).

is below zero, the smoothed curve
is significantly decreasing (red).

contains zero, the derivative is
not significantly different from
zero (purple).

If there is not enough data (gray).

SiZer {feature}

Chaudhuri, P. and Marron, J. S. (1999).
SiZer for Exploration of Structures in Curves.
Journal of the American Statistical Association,94,
807–823.
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Kernel density estimation

SiZer

For each pair (x, h), with h > 0, the SiZer computes the
confidence interval for f̂ ′

h (with α = 0.05).
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If the interval:

is above zero, the smoothed curve
is significantly increasing (blue).

is below zero, the smoothed curve
is significantly decreasing (red).

contains zero, the derivative is
not significantly different from
zero (purple).

If there is not enough data (gray).

circsizer.density

{NPCirc}

Oliveira, M., Crujeiras, R.M. and Rodŕıguez–Casal
(2014).
CircSiZer: an exploratory tool for circular data.
Environmental and Ecological Statistics,21, 143–159.



ExploRatory and statistical tools to investigate multimodality

Empirical distribution function

Increasing and decreasing intervals

Simultaneous confidence statements for the existence and location
of local increases and decreases of a density f .

Waiting time to next eruption (minutes)
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It only depends on the
ordered sample.

At least one of the extrema
of the interval must be
known (and finite).

It does not allow repeated
data.

modeHunting {modehunt}
Dümbgen, L. and Walther, G. (2008).
Multiscale Inference about a density.
The Annals of Statistics, 36, 1758–1785.
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Empirical distribution function

Dip

The dip test measures multimodality in a sample by the maximum
difference, over all sample points, between the empirical
distribution function, and the unimodal distribution function that
minimizes that maximum difference.

Under the assumption that
the distribution is unimodal,
it generates a modal interval
(xL, xU ).

In the example of waiting
time, the modal interval is
(73, 86).

dip {diptest}
dip.test {diptest}

Hartigan, J. A. and Hartigan, P. M. (1985).
The Dip Test of Unimodality.
Journal of the American Statistical Association,86,
738–746.
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Empirical distribution function

Dip

The dip test measures multimodality in a sample by the maximum
difference, over all sample points, between the empirical
distribution function, and the unimodal distribution function that
minimizes that maximum difference.

Test: Resamples are
generated from the uniform
distribution.

Reject if
d(X ) < Qα(d(U

∗)).

In the example of waiting
time, the p–value
(B = 2000) is 0.001.

dip {diptest}
dip.test {diptest}

Hartigan, J. A. and Hartigan, P. M. (1985).
The Dip Test of Unimodality.
Journal of the American Statistical Association,86,
738–746.
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Empirical distribution function

Excess Mass

Under the assumption that f has (at most) k modes, excess mass
can be empirically estimated by

En,k(Pn, λ) = sup
C1,...,Ck

{

k
∑

l=1

Pn(Cl)− λ||Cl||

}

,

Dn,k(λ) =
En,k+1(Pn, λ)− En,k(Pn, λ).

∆n,k = max
λ

{Dn,k(λ)}.

Our proposal: Resamples generated
from a modified f̂hk

.

In the example of waiting time, the
p–values (B = 500) are: 0(k = 1),
0.214(k = 2).

Müller, D. W. and Sawitzki, G. (1991)
Excess mass estimates and tests for multimodality
The Annals of Statistics, 13, 70–84.
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