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Summary

• EOF (PCA) and Extented EOF for Climate Data

• Independent Component Analysis;

• Using ICA for Extended Time series

• Case study



EOF/PC Analysis attempts to find a relatively small number of

linear transformations of initial variables which convey as much

of the original information as possible.

The method is being used in climatology for more than 60 years

to extract the most valuable information from larger

spatiotemporal datasets by reducing the information to a few

dominant space-time patterns.

It is the classic eigenvalue/eigenvector (or SVD) decomposition

of the correlation (or covariance) matrix of data.

(PCA) Empirical Orthogonal

Function Analysis



PCs scores  or PC time series that 

are uncorrelated

EOFs maps or PC 

loadings, eigenvectors, 

are  the orthogonal set 

of spatial (maps) 

patterns (EOFs).
The first few EOFs account for as

much as possible of the

variation in the original data.

Eigenvalue 

EOF for climate data
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EOF Analysis

….

Winter monthly SLP over the Northern H. from 

1948-2000 (NCAR/NCEP). Ref: Hannachi A., 

2004.  A primer for EOF analysis of climate data 

Usually data are time series

and associated with grid

points data (maps).



Since the climate data contain all sorts of features, e.g.

stationary and propagating features, and EOF only uses spatial

correlation of the field and we have orthogonality in space and

time;

• Discussion about how to understand the physical meaning

of EOFs.

Modifications (extensions) of the classical EOF have been

introduced to use both spatial and time information, in order

to identify such propagating features:

e.g. Rotated EOFs (REOFs), Extended EOFs, Hilbert EOF,

Principal Oscillation Patterns (POPs) ,…., ICA…

Extending EOF in climate data.

Why?



Extended EOFs (MSSA) are simply multivariate EOFs in which the

additional variables are lagged versions of the same process.

The p “elements” of the data matrix  are (m-temporal) vectors.

Extended EOF in climate data

The original matrix X is used to obtain a (n-m+1)×(mp) matrix X’, 

"augmented matrix of lagged data", which is significantly larger 

than the original matrix of data.

Pre-processing data: Previously to EEOF analysis, the data may be subjected

to an EOF analysis to reduce its dimension.



Extended EOF problems

We extract information of  

Covariance matrix S’ , where Sij is the 

lagged covariance matrix up to lag 

m-1, between ith and jth gridpoints.

Interpretations of mp dimension EOFs and PCs time series
If data are describing points in a map then EEOFs can be considered as m maps, of 

dimension p, where propagating behaviour can be studied. 

Caution must be used 

• when we want to interpret the EEOFs since correlation among 

internal structures are not taken in account

• In deciding the  m value, the "best" size of the lagged vector.  



EEOF example 1

Ref: Hannachi A. et al, 2007. Empirical orthogonal functions and 

related techniques in atmospheric sciences. A review .

The Outgoing Longwave Radiation (OLR) anomalies data 

(NCEP/NCAR) reanalyses over the tropical

region from 30 °S to 30°N. Daily data from 1.jan.1996-31.dec. 2002

The leading 10 EOFs/PCs of the anomaly field was used as preprocessing  the data 

to reduce the dimensionality of the data, and  EEOF with M=80 days to try to 

capture Madden Julian Oscillation (MJO)  



EEOF example1- Hovmoller diagram
We may use the EOFs that 

are linear combination of 

grid-points to rewrite 

EEOFs  for grid-points.

EEOF 8 in 10 °N as a function of time lag. 

shows the Madden–Julian 

oscillation (MJO): eastward 

propagating structure

with an average phase 

speed around 100°/23 day.



In a matrix form by X = SA’:

Xn × p observed data matrix

Sn × k matrix of k independent components;

Ap × k is the matrix of unknown parameters (columns

linearly independent).

We must assume that components si are statistically

independent for i= 1, …, k and at least k - 1 components

of si have nongaussian distributions.

Independent Component Analysis

The main objective of ICA is to find hidden components or

factors that relate sets of random variables, signals, time series.

In the model, we assume that those sources are statistically

mutually independent, which can not be observed directly and

are designated independent components.



Since in most applications it is impossible to derive exactly independent

sources, ICA methods define approximate measures of

independence/ non-normality as objective and then search for

projections of the observations that optimize those measures:

• Maximizing nongaussianity:
Kurtosis, Negentropy and approximations of negentropy are used as

measures of optimization of nongaussianity to estimate

• (or) minimization of entropy-based mutual information

the entropy-based mutual information is a common measure of

independence

. Maximum Likelihood Estimation

Several algorithms that allow the extraction of ICs (Hyvärinen et al., 2001)

• FastICA (efficient algorithm , fast convergence)

• AMUSE (when independent components have some temporal dependence)

ICA ESTIMATION



Independent components (ICs) obtained through rotation of 

the leading five PCs of monthly means SLP anomalies.

ICA for Climate data

Ref. Hannachi, A., et al, 2009. ICA of 

climate data: A new look at  EOF 

rotation.

Weighted Monthly SLP anomalies data over the Northern H. Jan 

48-Dec 06. Original data from (NCEP/NCAR) reanalysis. 

significant correlations, at 1% level, multiplied by 10

Correlation map 

between the IC4 and 

the global monthly 

mean SLP field. 



� Monthly Mean Geopotencial Height

• DATA: 50-years set of the monthly mean geopotential 

height at 500 hPa, Jan. 58 to Dec. 07. (50*12=600 time values)

• SECTOR: covering a sector of the Northern Hemisphere for 

the domain (20oN - 80oN) and (0oE - 357.5oE)

• SPATIAL GRID: an uniform spatial grid of 2.5o in 

latitude and longitude (25 by 144 =3600 grid points)

• SOURCE: obtained from the NCEP/NCAR reanalysis 

archives (NOAA). Provided by Physical Sciences Division, 

Earth System Research Laboratory, NOAA, Boulder, 

Colorado, from their Web site at 

http://www.esrl.noaa.gov/psd/



http://www.esrl.noaa.gov/psd/data/gridded/reanalysis/

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.pressure.html





http://cran.r-project.org/web/packages/ncdf/index.html

This package provides a high-level R interface to Unidata's netCDF data files

David Pierce- Institution of Oceanography

https://cran.r-project.org/web/packages/RNetCDF/index.html

An interface to the NetCDF file format designed

https://cran.r-project.org/web/packages/RNCEP/index.html

This package contains functions to retrieve, organize, and visualize weather data

from the NCEP/NCAR Reanalysis

Michael U. Kemp. https://sites.google.com/site/michaelukemp/rncep

Main packages 



https://cran.r-project.org/src/contrib/Archive/clim.pact/

For making climate analysis and downscaling of monthly mean and daily mean global

climate scenarios. Rasmus E. Benestad- http://www.realclimate.org/ and Norwegian Met. Inst.

https://github.com/metno/esd

https://cran.r-project.org/web/packages/maps/index.html

(Draw Geographical Maps) Richard A. Becker and Allan R. Wilks

https://cran.r-project.org/web/packages/fields/index.html

(Tools for Spatial Data)

http://cran.r-project.org/web/packages/climatol/index.html

Jose A. Guijarro (jaguijarro@inm.es)



http://cran.r-project.org/web/packages/fastICA/index.html

FastICA is considered one of the most efficient algorithms, has a fast

convergence and uses the classic method of approximating negentropy as a

measure of nongaussianity to estimate the sample components).

http://research.ics.aalto.fi/ica/fastica/

http://cran.r-project.org/web/packages/ts/index.html



> length(AltGeop.500.MM.1958.2007.Lat20N80N$lon)

[1] 144 

> length(AltGeop.500.MM.1958.2007.Lat20N80N$lat)

[1] 25

> length(AltGeop.500.MM.1958.2007.Lat20N80N$tim)

[1] 600 time=50 (yy)*12 

DATA DIMENSION:(time, level, latitude, longitude)
> dim(AltGeop.500.MM.1958.2007.Lat20N80N$dat)

[1] 600   1  25 144

> AltGeop.500.MM.1958.2007.Lat20N80N$lon

[1] -177.5 -175.0 -162.5  165.0  167.5  170.0 …..  [141]  172.5  175.0  177.5  180.0

> AltGeop.500.MM.1958.2007.Lat20N80N$lat

[1] 20.0 22.5 25.0 27.5 30.0 32.5 …… [18]  62.5 65.0 67.5 70.0 72.5 75.0 77.5 80.0

> AltGeop.500.MM.1958.2007.Lat20N80N$lev

[1] 500              attr(,"unit")     [1] "millibar"

MAT2D.AltGeop<-function(X) {

# Function to obtain a matrix 2-D for data #



• Then with the aim to reduce the

effect of high latitude data that

correspond to smaller grid sizes, an

area weighting was applied by

multiplying the geopotential

anomalies by the square root of the

cosine of the corresponding latitude.

Weighted geopotential anomalies

• First we computed the geopotential anomalies as departures

from the mean annual cycle.



addland()

#heatcolors#

require(gplots)

require(RColorBrewer)

package graphics,
image.plot function and filled.contour, 



22

Variance explained - 15,5%

#define our palette#

coltab2<-two.colors(n=256, start="darkblue", end="red", middle="white", alpha=1.0)

coltab3<-two.colors(n=64, start=……)

imageFile2<-image(LON,LAT, MATRIXPCi), col=coltab2,

zlim=c(-max(abs(MATRIXPCi)*scaleF),        max(abs(MATRIX PCi)*scaleF))

addland()

Correlation with North Atlantic Oscillation (NAO) index about 0.62.

Variance explained – 11,2%



METHODOLOGYMETHODOLOGY
• PCA was used as a pre-processing method of retaining PCs. So 

the first 19 PCs (in a total of 600 PCs) were retained (which 

correspond to 87.17% of the explained variability in the data.

• Choice of a lag m = 180 months (15 years), to allow the 

distinction of oscillations with periods in the range (m/5, m) = 

(36, 180) (Plaut and Vautard, 1994).

• We decided to consider

only final 20 PCs and 20 ICs. 

Note that whereas PCs are ranked in

descending order of the variance, usually

ICs are not sorted out in a specific order.



Comparison between spectra with the PCs and ICs that correspond to 

the dominant periods of 144, 43 and 33 months after applying  PCA 

and ICA in the matrix of lagged data with a lag m = 180 and 19 

channels. 



• The application of ICA reveals to have an interesting role as an

alternative to the classical PCA (EEOF). Spectral analyses detects

fundamentally the same dominant periods of oscillation along 50

years in the geopotential height.

• The main peaks of frequency showed to be coincident and the

respective oscillations periods were 33, 43 and 144 months (12

years). This period of 12 years of oscillation is very interesting,

which is close to the 11-years solar cycle.

Labitzke and Matthes (2005) refer that some solar cycles show high correlations between the

11-year solar cycle and the geopotential among others meteorological parameters, in the

lower stratosphere and troposphere.

RESULTS
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