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Introduction: European Group for Blood and Marrow Transplantation

Data from leukemia patients from the European Group for Blood and Marrow
Transplantation (EBMT)∗

• 8966 patients with some type
leukemia

• Patients underwent bone marrow
transplantation

• At risk of developing a variety of
complications that compete with
each other

Table: Number of events for each cause of death.

Event Relapse GvHD Bacterial Viral Fungal Other Censored
Number 1098 834 151 147 156 924 5656

• Dataset contain several variables:

∗ Times (in days) from transplantation to death or last follow-up (time)

∗ Status indicator (status): 0 = censored, 1 = relapse, etc.

∗Fiocco et al. (2005), Wreede et al. (2011).Nora M. Villanueva – nmvillanueva@uvigo.gal 4



Introduction: European Group for Blood and Marrow Transplantation
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1. Are all these curves equal?

2. Can we identify groups in some way?
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Introduction: Framework

Methods to test for the equality of cumulative incidence curves

• Aly et al. (1994), Carriere and Kochar (2000), Kochar et al. (2002) and Sankaran et
al. (2010), compare of the CIF among each other

• Gray (1988) compares the CIF for a particular type of failure among the different levels
of a factor.

If the null hypothesis of equality of curves is rejected, at least one curve is different

• Can we perform groups? How many of them are there?

• There are no methodological papers proposing clusters of CIF for competing risk data

• We propose an approach that allows determining CIF groups with an automatic
selection of their number
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Methodology: Notation

Some previous notation

• General random censorship model, in which n individuals mutually independent are
observed.

• Let Ti (i = 1, . . . , n) be the lifetime corresponding to any J competing causes with
j = 1, ..., J and Ei the type of event with E ∈ {1, ..., J}. Here we consider the events
to be deaths from different causes.

• Assuming that Ti is observed subject to a (univariate) random right-censoring variable
Ci assumed to be independent of Ti

• Due to censoring we only observe (T̃i,∆i,∆iEi) where T̃i = min(Ti, Ci),
∆i = I(Ti ≤ Ci)
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Methodology: Notation

The distribution of the lifetime, T , can be characterized by S(t) given by

S(t) = P (T > t) = 1− P (T ≤ t) = 1− F (t).

This distribution may be derived from the following J cause-specific hazard functions

hj(t) = lim
∆t→0

P (t < T ≤ t+ ∆t, E = j | T > t)

∆t
.

Certainly, one has

S(t) = exp(−
∫ t

0

J∑
j=1

hj(t)).

It also holds that

S(t) = 1−
J∑
j=1

Fj(t),

where Fj(t) = P (T ≤ t, E = j), is the CIF, which is the probability of dying from a
particular cause, E = j, by time t while also being at risk of dying from other causes.

The cause-specific CIF can also be expressed as a function of the cause-specific hazards
for all J causes as

Fj(t) =

∫ t

0
S(u)hj(u)du.
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Methodology: Notation

Since the censoring time is assumed to be independent of the process, the survival
function, S(t) = P (T > t) may be consistently estimated by the Kaplan-Meier estimator
(Kaplan and Meier, 1958)

Ŝ(t) =
∏

T̃(i)≤t

(
1−

∆i

R(T̃(i))

)
,

where T̃(1) ≤ · · · ≤ T̃(n) denotes the ordered T -sample based on all n individuals, and

R(t) =
∑n
i=1 I(T̃i ≥ t) indicates the number of individuals at risk just before time t.

An estimator of the cumulative incidence functions, CIF, is obtained directly from the
previous equation by plug-in the Nelson-Aalen estimator and the product-limit estimator of
survival (Geskus, 2011)

F̂j(t) =
∑
T̃(i)≤t

Ŝ(T̃−
(i)

)
I(∆[i]E[i] = j)

R(T̃(i))
.
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Methodology: The algorithm for determining groups

If H0 : F1(t) = F2(t) = . . . = FJ (t) for all t > 0 is rejected...

• We would like to asses if the levels {1, . . . , J} can be grouped in K groups
{G1, . . . , GK} with K < J , so that

∗ Fi = Fj for all i, j ∈ Gk, for each k = 1, . . . ,K

∗ {G1, . . . , GK} must be a partition of {1, . . . , J}

∗ G1 ∪ . . . ∪GK = {1, . . . , J} and Gi ∩Gj = ∅ for all i 6= j ∈ {1, . . . ,K}

• A procedure to test, for a given number K, the null hypothesis H0(K) is that at least
exists a partition {G1, . . . , GK} so that all the conditions above are verified.
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Methodology: The algorithm for determining groups

The testing procedure is based on the J-dimensional process

Û(t) = (Û1(t), Û2(t), . . . , ÛJ (t))t,

where, for j = 1, . . . , J ,

Ûj(t) =
K∑
k=1

w(t)−1/5[F̂j(t)− M̂k(t)] I{j∈Gk}

and M̂k corresponds to the average of the CIF estimate F̂j for all j ∈ Gk, i. e.,

M̂k(t) =
1

rk

∑
j∈Gk

F̂j(t), where rk = #Gk.

• Statistic tests

DCM = min
G1,...,GK

J∑
j=1

∫
τ
T̃

Û2
j (t)dy,

DKS = min
G1,...,GK

J∑
j=1

∫
τ
T̃

|Ûj(t)|dy.

∗ With J = 30 and K = 5, the total number of distinct assignments is 7.7 1018, following Jain and Dubes (1988),

R(J,K) = 1
K!

∑K
i=1(−1)K−i

(
K
i

)
(i)n
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Methodology: The algorithm for determining groups
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Methodology: The algorithm for determining groups

The testing procedure is based on the J-dimensional process

Û(t) = (Û1(t), Û2(t), . . . , ÛJ (t))t,

where, for j = 1, . . . , J ,

Ûj(t) =
K∑
k=1

w(t)−1/5[F̂j(t)− M̂k(t)] I{j∈Gk}
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• Statistic tests
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G1,...,GK
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j=1

∫
τ
T̃

Û2
j (t)dy,−→ Kmeans

DKS = min
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J∑
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∫
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T̃
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• Decision rule: we reject H0 for large statistic values.

• Distribution of D? Bootstrap method (Efron, B., 1979, 1981)
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Methodology: The algorithm for determining groups

The steps of the testing procedure, for a given K, are as follows

Step 1. Using the original sample, for j = 1, . . . , J and i = 1, . . . , n, estimate the
cumulative incidence functions Fj in a non parametric way and in a common grid,
using each sample separately.

Then, using the proposed algorithms, obtain the “best” partition {G1, . . . , GK}
and with it obtain the estimated curves M̂k.

Step 2. Obtain the D value as explained before.
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Methodology: The algorithm for determining groups

Step 3. Draw bootstrap samples using a pooled bootstrap procedure (i.e., bootstrap from
the pooled combined partition sample given by the null hypothesis H0(K)).

Step 4. Let D∗b be the test statistic obtained from the bootstrap samples
{(T̃ ∗bij ,∆∗bij ), i = 1, . . . , nj}, j = 1, . . . , J

The decision rule consists of rejecting the null hypothesis if D > D∗(1−α), where D∗(1−α)

is the empirical (1− α)-percentile of values D∗b (b = 1, . . . , B) previously obtained.
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Methodology: The algorithm for determining groups

Algorithm 1. K-cumulative incident curves algorithm

1. With {(T̃i,∆i,∆iEi), i = 1, . . . , n}, and using the Geskus estimator obtain F̂j .

2. Initialize with K = 1 and test H0(K):

2.1. Obtain the “best” partition {G1, . . . , GK} by means of the K-means or K-medians
algorithm.

2.2. For k = 1, . . . ,K, estimate M̂k and retrieve the test statistic D.

2.3. Generate B bootstrap samples and calculate D∗b, for b = 1, . . . , B.

2.4. if D > D∗(1−α) then

reject H0(K)

K = K + 1

go back to 2.1

else

accept H0(K)

end

3. The number K of groups of CIF is determined.
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Simulation studies: Experiment I

I. Testing one specific hypothesis H0(2)

We have followed the algorithm from Beyersmann’ Book (Beyersmann et al., 2012) to
simulate the data, where the variable T was generated from the distribution

F (t) = 1− S(t) = 1− exp

(
−
∫ t

0
h1(u) + h2(u) + . . .+ hJ (u)du

)
.

Scenario with J = 3 cause-specific hazards

∗ h1(t) = 0.58/(t+ 4), h2(t) = 0.03× log(t+ 1) and h3(t) = 0.03× log(t+ 1 + 6a),
with a being a constant.

∗ C ∼ U [0, c] with c being 40 and 20, leading to a proportion of censored data (when
a = 0) of approximately 15% and 30%, respectively.

∗ Different values of a were considered, ranging from 0 to 0.4 Note that a = 0 corresponds to the null hypothesis

H0(2) and when the value a 6= 0, the number of groups is three.

Nora M. Villanueva – nmvillanueva@uvigo.gal 19



Simulation studies: Experiment I

∗ 1000 trials at the significance levels of 0.05 and 0.10, and sample sizes of
n = 500, 1000 and 1500.

∗ We apply the bootstrap method (500 bootstrap samples for type I errors and for the
power under the alternative) to determine the critical values of the tests.

Table: Experiment I. Estimated type I errors of testing H0(2) based on the test statistics DCM and DKS when the
distribution of the censoring time C is U(0, 40) ∼ 15% censoring or U(0, 20) ∼ 30% censoring.

DCM DKS
C n α: 0.05 0.10 0.05 0.10

500 0.02 0.06 0.03 0.07
U(0, 40) 1000 0.04 0.07 0.05 0.08

1500 0.03 0.07 0.04 0.08
500 0.02 0.06 0.03 0.06

U(0, 20) 1000 0.04 0.08 0.04 0.09
1500 0.03 0.06 0.04 0.07
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Simulation studies: Experiment I
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Figure: Rejection probabilities of the two tests for nominal level 5% (red line).
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Simulation studies: Experiment II

II. Assessing the K-cumulative incident curves algorithm

∗ Same scenario than the previous one, but taking into account a = 0.

∗ There are J = 3 cause-specific hazards but two of them are equal.

∗ The censoring variable C and the remainder parameters were generated and kept as
previously.

∗ Results of this simulation refers to the number of times (of 1000 repetitions) that
Algorithm 1 selects the number of groups using a nominal level of 5%.
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Simulation studies: Experiment II

Table: Experiment II. Number of times (of 1000 trials) that Algorithm 1 selects the number of groups using a nominal
level of 5%.

Number of groups
DCM DKS

C n 1 2 3 1 2 3
500 0 985 15 0 976 24

U(0, 40) 1000 0 963 37 0 956 44
1500 0 968 32 0 962 38

500 0 975 25 0 974 26
U(0, 20) 1000 0 965 35 0 955 45

1500 0 973 27 0 967 33

∗ Note that, in order to perform correctly, the algorithm must reject H0(1) and then, accept H0(2).
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Application to real data: European Group for Blood and Marrow Transplantation

Data from leukemia patients from the European Group for Blood and Marrow
Transplantation (EBMT)∗

• 8966 patients with some type
leukemia

• Patients underwent bone marrow
transplantation

• At risk of developing a variety of
complications that compete with
each other

Relapse

GvHD

Other causes

Bacterial

Fungal

Viral

Alive

∗Fiocco et al. (2005), Wreede et al. (2011).

• Dataset contain several variables:

∗ Times (in days) from transplantation to death or last follow-up (time)

∗ Status indicator (status): 0 = censored, 1 = relapse, etc.
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Application to real data: Package structure and results

• clustcurv package is a shortcut for “clustering curves” that allows users determining
groups of multiple curves with an automatic selection of their number

• The package works for survival, regression and cumulative incidence functions

• In view of the high computational cost entailed in these methods, parallelization
techniques are included to become feasible and efficient onto real situations

• The package can be downloaded from github
https://github.com/noramvillanueva/clustcurv/tree/CIF

• Starting with the analysis

R> devtools::install github("noramvillanueva/clustcurv", ref = "CIF")
R> library(clustcurv)
R> library(mstate)
R> data(ebmt2)
R> table(ebmt2)

Relapse GvHD Bacterial Viral Fungal Other Alive
1098 834 151 147 156 924 5656
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Application to real data: Package structure and results

• Two main types of functionalities:

∗ to determine groups of curves, given a number K, with kregcurves(),
ksurvcurves() or kcifcurves() functions

∗ to determine groups of curves with the automatic selection of their number with
regclustcurves(), survclustcurves() or cifclustcurves() functions

• Numerical and graphical summaries can be obtained by using the generic functions
print(), summary() and autoplot()
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Application to real data: Package structure and results
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Application to real data: Package structure and results

R> out2 <- cifclustcurves (time = ebmt2$time, status = ebmt2$status,
kbin = 50, nboot = 200, algorithm = "kmeans",

cluster = TRUE, seed = 300716)

R> autoplot(out2 , groups by colour = TRUE)
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∗ H0(4): p-value = 0.13
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Conclusions

• A new procedure is proposed that let us, not only testing the equality of cumulative
incident curves but also grouping them if they are not equal.

• Simulation studies show that our test controls type I error rate quite well under all
situations considered, and also the power performance for the alternative is good.

∗ Software in the form of an R package has been developed and is freely available from
GitHub (soon on CRAN).

• The contributions of this talk are based on:

Sestelo, M., Meira-Machado, L., Villanueva, N. M., and Roca-Pardiñas, J. (2024). A method for
determining groups in cumulative incidence curves in competing risk data. Biometrical Journal, 66,
2300084.

Villanueva, N. M., Sestelo, M., and Meira-Machado and Roca-Pardiñas, J. (2021). clustcurv: An R
package for Determining Groups in Multiple Curves. The R Journal, 12(1):164–183.

Villanueva, N. M., Sestelo, M., and Meira-Machado, L. (2019). A method for determining groups
in multiple survival curves. Statistics in Medicine, 38, 866–877.
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Since the censoring time is assumed to be independent of the process, the survival
function, S(t) = P (T > t) may be consistently estimated by the Kaplan-Meier estimator
(Kaplan and Meier, 1958)

Ŝ(t) =
∏

T̃(i)≤t

(
1−

∆i

R(T̃(i))

)
,

where T̃(1) ≤ · · · ≤ T̃(n) denotes the ordered T -sample based on all n individuals, and

R(t) =
∑n
i=1 I(T̃i ≥ t) indicates the number of individuals at risk just before time t.

The Kaplan-Meier product-limit estimator can also be expressed using Kaplan-Meier
weights (Meira-Machado and Sestelo, 2019)

Ŝ(t) = 1−
n∑
i=1

wiI(T̃(i) ≤ t),

where

wi =
∆[i]

n− i+ 1

i−1∏
j=1

[
1−

∆[j]

n− j + 1

]
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If H0 : F1(t) = F2(t) = . . . = FJ (t) for all t > 0 is rejected...

• We would like to asses if the levels {1, . . . , J} can be grouped in K groups
{G1, . . . , GK} with K < J , so that

∗ Si = Sj for all i, j ∈ Gk, for each k = 1, . . . ,K

∗ {G1, . . . , GK} must be a partition of {1, . . . , J}

∗ G1 ∪ . . . ∪GK = {1, . . . , J} and Gi ∩Gj = ∅ for all i 6= j ∈ {1, . . . ,K}

• A procedure to test, for a given number K, the null hypothesis H0(K) is that at least
exists a partition G0 = {G1, . . . , GP } with P ≤ K so that all the conditions above are
verified.

• The alternative hypothesis H1(K) is that for any partition G1 = {G1, . . . , GL} with
L > K, not exists another partition G0 verifying #G0 < #G1 where

#{G1, . . . , GK} = 1 +
K∑

k2=2

 ∏
k1<k2

I{Gk1 6= Gk2}


and, for definition, Gk1 6= Gk2 is verified if Si 6= Sj for all (i, j) ∈ Gk1 ×Gk2 .
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The steps of the testing procedure, for a given K, are as follows

Step 1. Using the original sample, for j = 1, . . . , J and i = 1, . . . , n, estimate the
cumulative incidence functions Fj in a non parametric way and in a common grid,
using each sample separately.

Then, using the proposed algorithms, obtain the “best” partition {G1, . . . , GK}
and with it obtain the estimated curves M̂k.

Step 2. Obtain the D value as explained before.

Nora M. Villanueva – nmvillanueva@uvigo.gal 37



References

Step 3. Draw bootstrap samples using a pooled bootstrap procedure (i.e., bootstrap from the pooled combined
partition sample given by the null hypothesis H0(K)). To this end, proceed with the following steps:

3.1 Compute the sample size for each possible cause of death j as nj =
∑n
i=1 I(∆iEi = j) and the

sample size for each pooled combined partition sample from Gk as mk =
∑J
j=1 njI{j∈Gk}

.

3.2 For b = 1, . . . , B, draw

(T̃∗b1 ,∆∗b1 ,∆∗b1 E∗b1 ), (T̃∗b2 ,∆∗b2 ,∆∗b2 E∗b2 ), . . . , (T̃∗bn ,∆∗bn ,∆∗bn E∗bn ) by independent

sampling mk times with replacement from R̂k , the empirical distribution function putting mass

m−1
k
wj at each point (T̃i,∆i,∆iEi = j) with j ∈ Gk .

Drawing from R̂k involves sampling from the observed data points corresponding to the cause of
death partition Gk . Specifically, each draw is performed by randomly selecting a data point

(T̃i,∆i,∆iEi = j), where j belongs to the cause of death partition Gk . The number of times
each cause of death j contributes to the sampling is proportional to its weight wj in the pooled
combined partition sample.
To provide further clarification, it is important to note that, in accordance with H0(K), each new
bootstrap partition of size mk must be balanced concerning the sample size (nj ) of each cause of
death included within Gk . This balance is essential because it ensures that the cumulative incidence
of causes of death within each group remains similar. Therefore, wj serves as a weight for each

competing cause of failure j which rescales the initial mass m−1
k

using a ratio of the form

wj = p0/pj with p0 = 1/rk and pj = nj/mk thus achieving a balanced sample within each
cluster.

Step 4. Let D∗b be the test statistic obtained from the bootstrap samples

{(T̃∗bij ,∆
∗b
ij ), i = 1, . . . , nj}, j = 1, . . . , J

The decision rule consists of rejecting the null hypothesis if D > D∗(1−α), where D∗(1−α) is the empirical

(1− α)-percentile of values D∗b (b = 1, . . . , B) previously obtained.
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